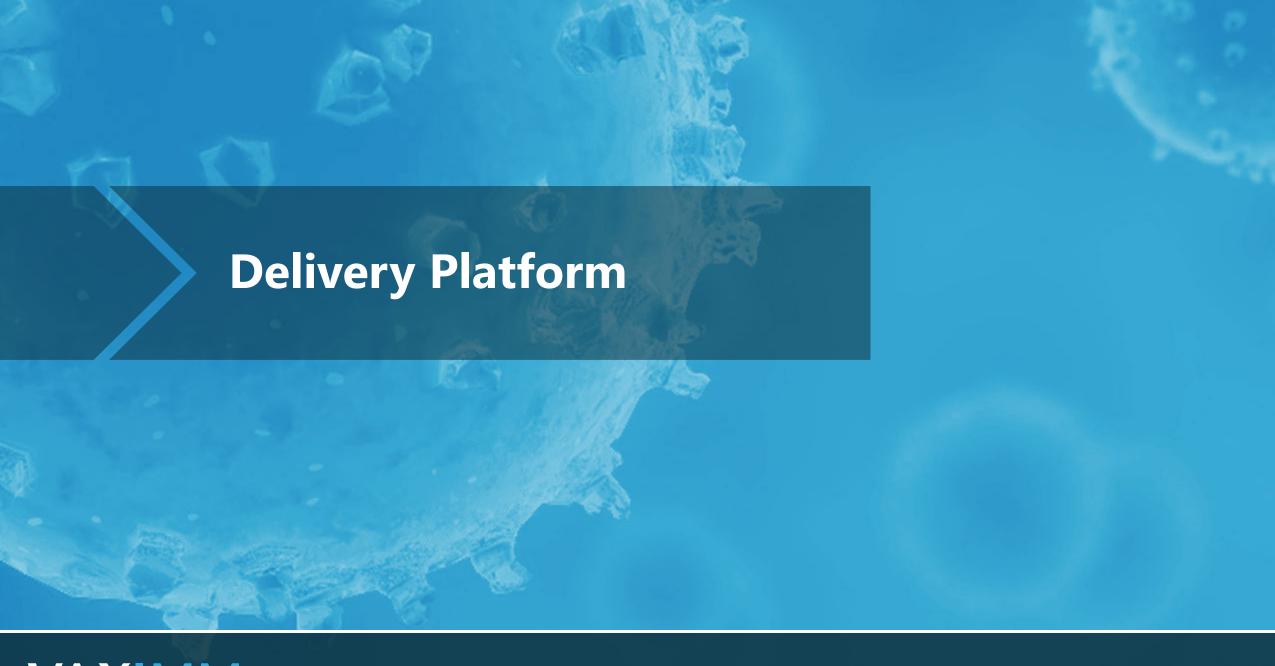


April 26, 2018

NEOANTIGEN Summit

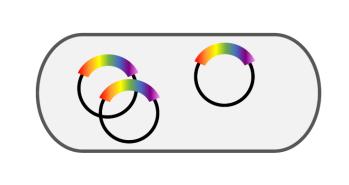
Supercharging Immunotherapies & Cancer Vaccines



How can we overcome manufacturing challenges in personalized neoantigen-targeting approaches?

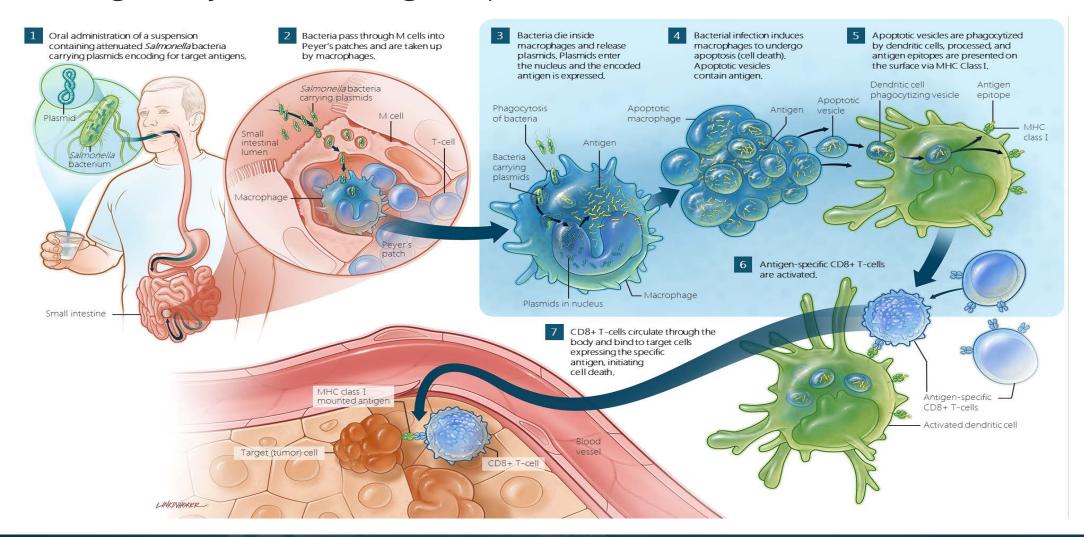
- Delivery platform
- Neoantigen targeting personalized approaches
- Manufacturing features
- Technical and immune proof of concept in animals
- Platform clinical proof of concept by lead product

Unique Ty21a Platform with Broad Potential

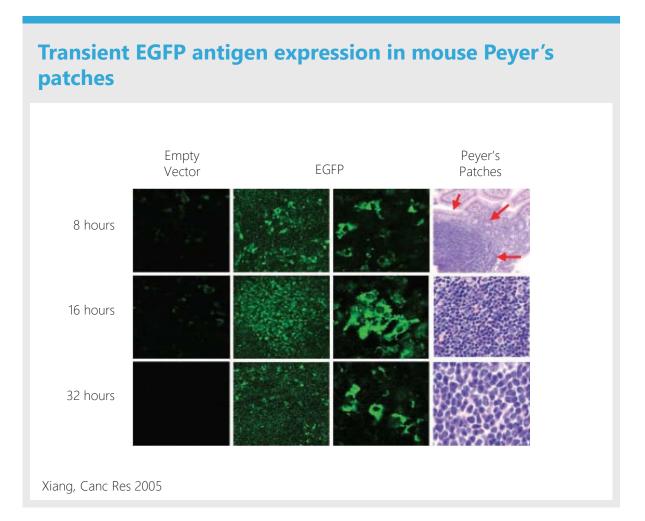

... for systemic antigen-directed T-cell activation

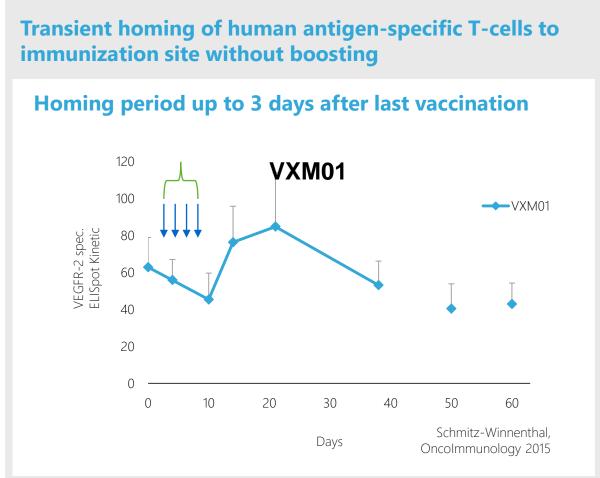
Bacterial carrier (Ty21a)...

- Live attenuated vaccine strain
- Approved travelers' vaccine (typhoid fever, Vivotif®)
- Oral vaccine naturally infects cells in the gut
- Applied >250 million times
- Excellent safety record and well tolerated


... containing eukaryotic expression plasmids

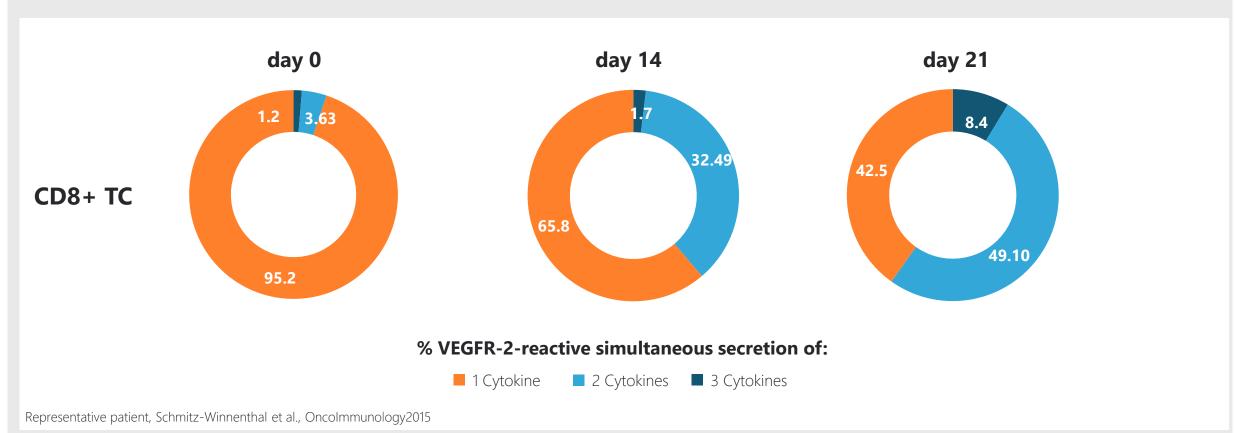
- Encoding the cDNA of the desired targets
- Plasmid is dormant within the bacterial carrier
- Drives strong expression of target antigen in infected cells within the patient's Peyer's patches
- Clinical safety/ immunogenicity/ efficacy demonstrated with a VEGFR-2 construct (VXM01) in pancreatic cancer and glioblastoma
 - VEGFR-2 consisting of 1356 amino acids corresponding to appr. 4000 base pairs


Intra-lymphatic Delivery via Oral Administration


... leading to systemic target specific T-cell activation

Confirmation of Mechanism of Action

... transient antigen expression and T-cell homing



T-cell Activation in VXM01-treated Patients

... can produce multi-functional T-cells

Proprietary Platform

... with key differentiating features

Natural, efficient & easy way to activate T-cells

Strong transient antigen expression allowing specific T-cells to target the tumor

- Oral delivery targeting the lymphatic tissue of the gut
- Repeated dosing possible
- Self-adjuvanted through concomitant bacterial Ty21a infection

High safety and good tolerability

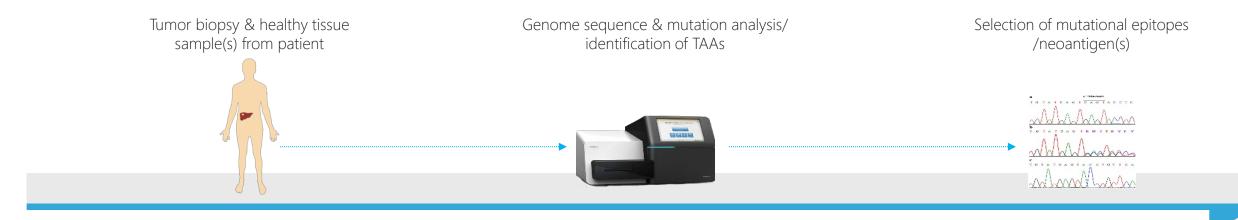
Readily combinable with other immune therapies

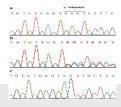
- Approved carrier bacterium, with excellent longstanding safety record
- Low therapeutic doses of typically 10⁶ to 10⁷ CFU, factor 100-1000 below Vivotif® dose
- No anti-vector immunity and little to no vector-related side effects
- Suitable for multi target approaches

Fast and easy manufacturing

Attractive cost of goods

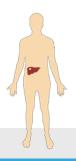
- Plug and play system
- Established methods (GMP manufacturing, QA/QC, etc.)
- Ideally suited for neoantigen / personalized vaccine approaches:


Objective is 15 days manufacturing time after identification of the neo-epitopes



Personalized vaccine


... identifying neoantigens



Synthesis of cDNA coding for multi-(neo)antigen polypeptide(s) Cloning of plasmid DNA, verification of sequence

Small batch
Treatment of patient
with personalized
neoantigen vaccine
(+off the shelf products)

Major Hurdles to Overcome

... delivery technologies

Challenges faced in personalized neo-antigen approaches

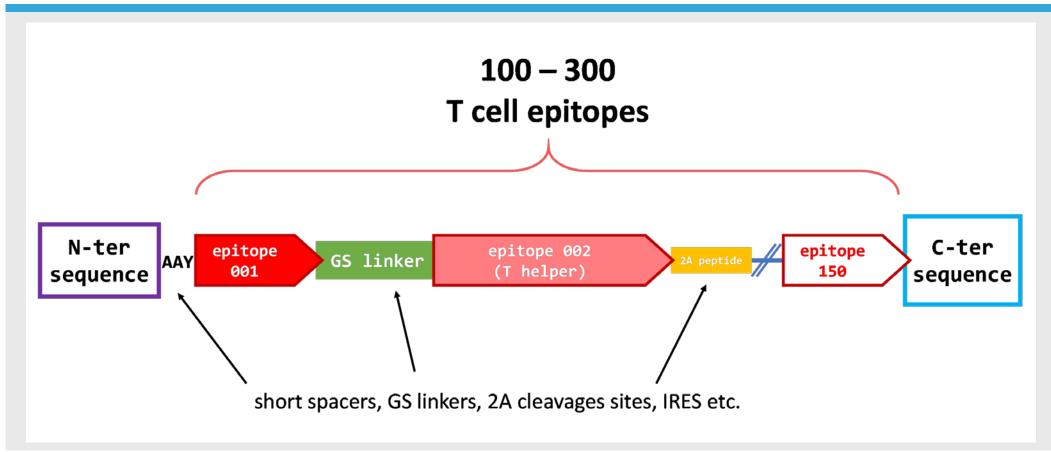
- Limitation in number of epitopes
- Time to needle
 - Time to oral administration after identification of neo-antigens
- Manufacturing costs for individualized therapies
- Scalability of the manufacturing process
- Individual QC analytics per product and product specification
 - Sterility testing for parenteral / intravenous drugs
- Incompatibilities in galenic formulation of drug product
- Long-term stability of drug product
- Doses to be administered
- Patient treatment during time from identification of neo-antigens to availability of personalized drug product

Competitive Landscape

... technologies for neoantigen vaccination

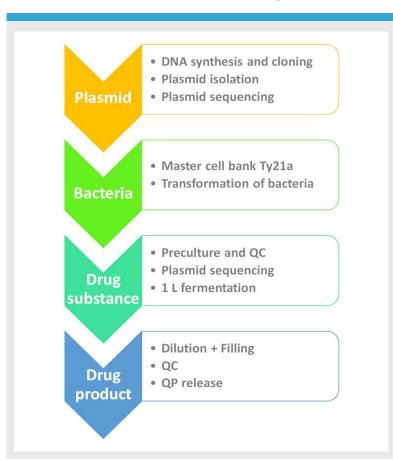
Overview of established approaches

Delivery Technology	Ease of manufacturing	Route of Administration
Listeria based vaccines	+++	Intravenous
mRNA	+	Intranodal Intravenous Intradermal
Viral Vectors	+	Intradermal
Peptides	+	Intradermal
Dendritic Cells	+	Intravenous
DNA	+++	Intramuscular



Less Limitation in the Number of Epitopes

... in "string-of-beads" encoding insert


High number of epitopes can be encoded

Straight-Forward Bacterial Fermentation Manufacturing

... in small scale at low costs

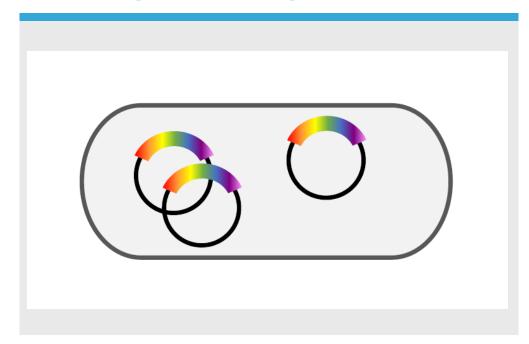
Robust manufacturing in a 1 L bacterial fermentation with disposable fermenters

- Master cell bank of empty Ty21a bacteria
- Plasmid individually synthesized
- Overnight culture for drug substance fermentation in 1 L scale
- Dilution to target concentration based on CFU
- Quality control analytics including plasmid sequencing
- QP release
- Objective is to minimize the manufacturing time to 15 days after neoantigen identification in a dedicated facility

Straight-Forward Bacterial Fermentation Manufacturing

... in small scale at low costs

Short time to administration after identification of neo-antigens

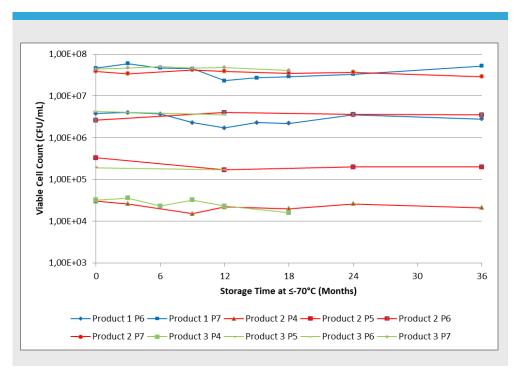

Delivery Technology	N2N time
VAXIMM	Neoantigen discovery + 15 days
Company A*	115 days
Company B*	90 days
Company C*	75 days

- Competitive in terms of
 - Time to administration after identification of neo-antigens
 - Manufacturing costs due to overnight bacterial fermentation in small scale
 - Upscaling not required due to high yield of bacteria
 - Net bacteria yield in the 10¹¹ CFU range
 - Allowing filling of drug product sufficient for years of treatment

Quality Control Analytics for One Defined Product

... in drug substance and drug product

Generic specification per individual construct with difference in encoding insert only

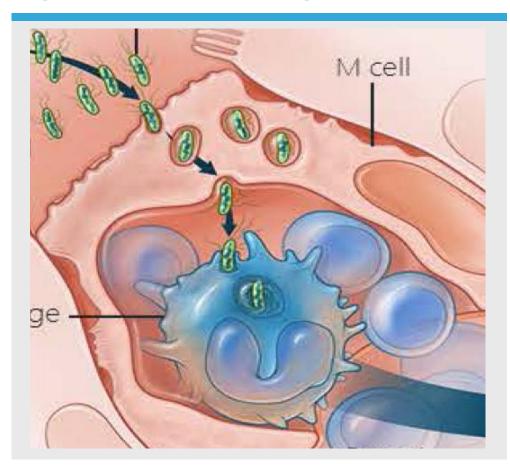


- Quality control assays established and validated through ongoing clinical development stage products
- Individual difference in encoding insert only
 - Sequencing to be performed
- No sterility testing required
 - Oral administration
 - Live bacteria-based constructs

Stable Pharmaceutical Formulation

... without risk of incompatibilities due to the nature of the product

One defined product with documented stability – no galenic incompatibilities



- Epitopes are encoded in the DNA plasmid
- Expression of neo-antigens in the Peyer's patches
 - No incompatibilities on the level of administration as the peptide manufacturer is the human body
- Drug substance and drug product formulations stable for 3 years as established for clinical-stage products

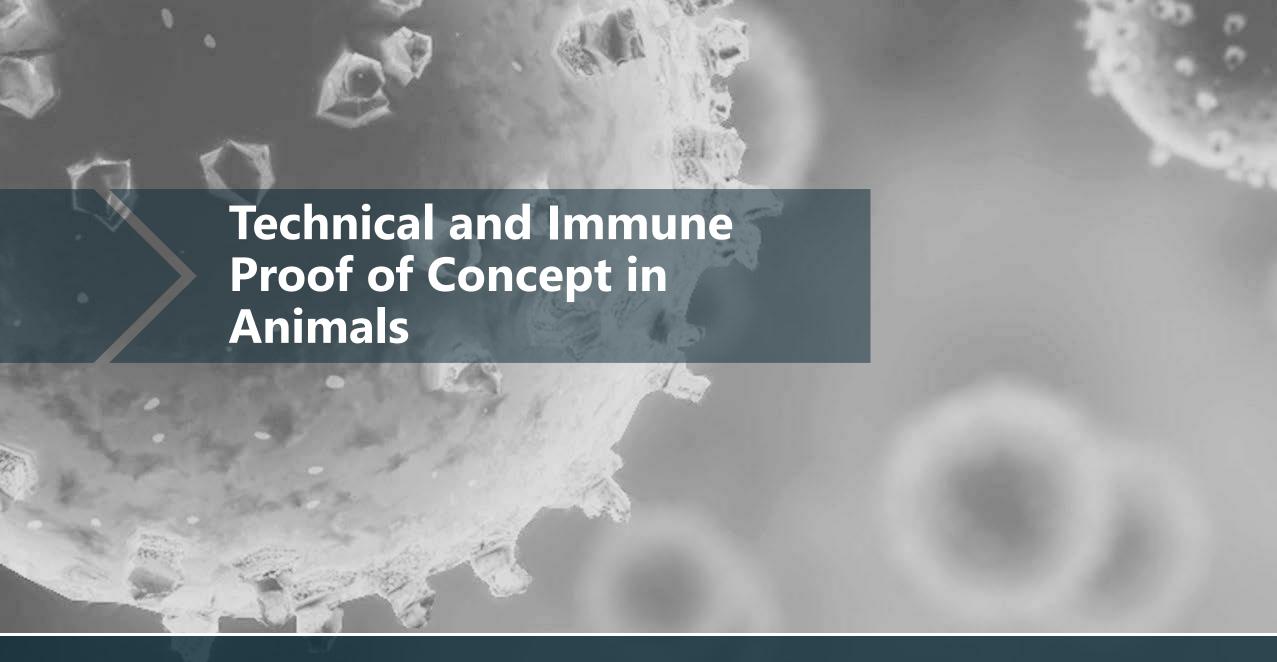
Very Low Doses of DNA Plasmid Administered

... far lower exposure than with other treatment modalities

Exposure to VXM DNA plasmid lower than with RNA or intradermal DNA

- Plasmids in 10⁷ CFU live bacteria correspond to appr. 1 ng DNA
- For comparison
 - RNA intranodal: 500 1000 μg (*Sahin et al., 2017*)
 - Synthetic long peptides s.c.: 0.3 mg of each peptide (Ott et al., 2017)

VXM-NEO Phase I Checkpoint Inhibitor Combination Study

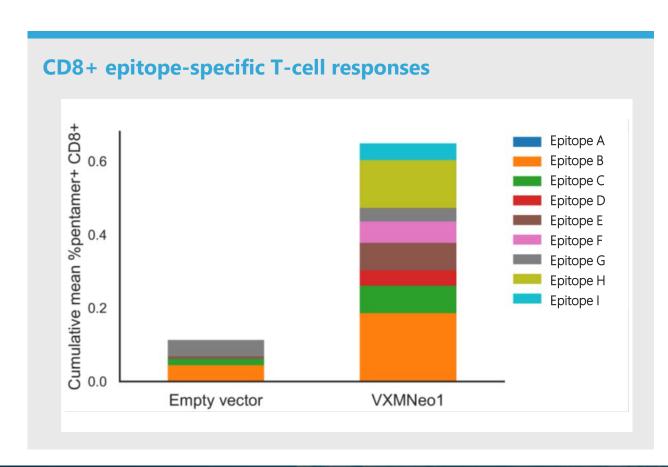

... personalized combined with shared antigen treatment

Clinical phase I study

- Identification of neoantigens in cancer indications with relevant mutational load
- Pre-treatment with off-the shelf shared antigen oral immunotherapies
- VXM-NEO treatment in combination with SoC checkpoint inhibitors

VXM-NEO

... Technical and pre-clinical immune PoC demonstrated

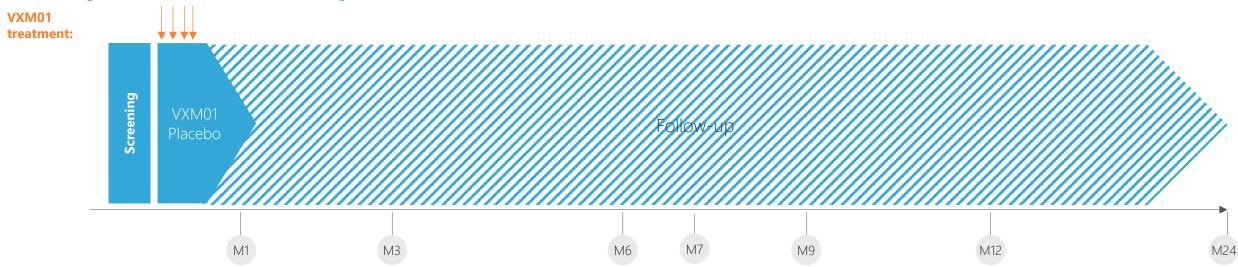

Construct with 9 dominant CD8 epitopes cloned

-VEGFR-2 -MSLN -WT-1	2 epitopes 2 epitopes 1 epitope	9 identical peptide pentamer flow cytometry reagents used
-CEA -OVA	3 epitopes 1 epitope	Additional HPV reagent as negative control

VXM NEO Multi-Epitope Platform

Immunological PoC in animals

VXM-NEO – epitope-specific CD8+ T-cell responses


 Epitope-specific T-cell response against 7 out of 9 epitopes detected

VXM01 Pancreatic Cancer Clinical Trial Completed

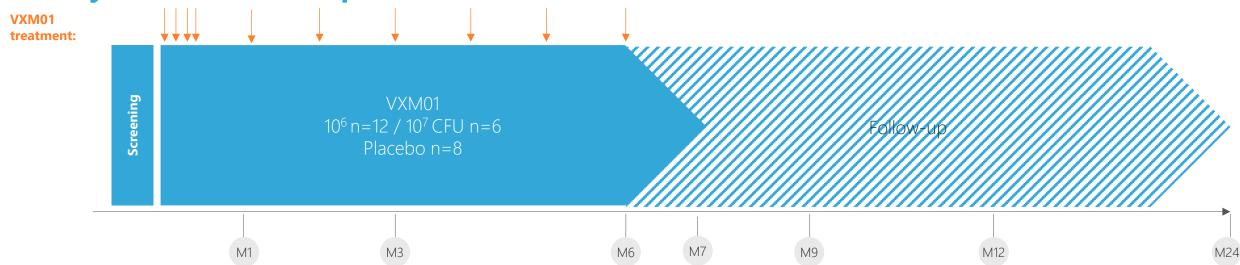
... first-in-human study part 1 with initial administration only

Locally Advanced or Inoperable Pancreatic Cancer

- 1st line, plus gemcitabine background chemotherapy or stand alone
- Testing five doses 10⁶ CFU through 10¹⁰ CFU n=6 each vs. placebo n=15
- Read-out:
 - Safety
 - Biomarker
 - T-cell response
 - Survival

Prof. Beckhove
Immunomonitoring

PD Dr. Schmitz-Winnenthal


Prof. Haefeli Head Clinical Pharmacology

VXM01 Pancreatic Cancer Clinical Trial Completed

... first-in-human extension including boosting

Locally Advanced or Inoperable Pancreatic Cancer

- 1st line, plus gemcitabine background chemotherapy or stand alone
- Testing two doses
- Read-out:
 - Safety
 - Biomarker
 - T-cell response
 - Survival

Prof. BeckhoveImmunomonitoring
NCT

PD Dr. Schmitz-Winnenthal

Prof. Haefeli Head Clinical Pharmacology

VXM01 Pancreatic Cancer Clinical Study

... a successfully completed randomized Phase I/II program

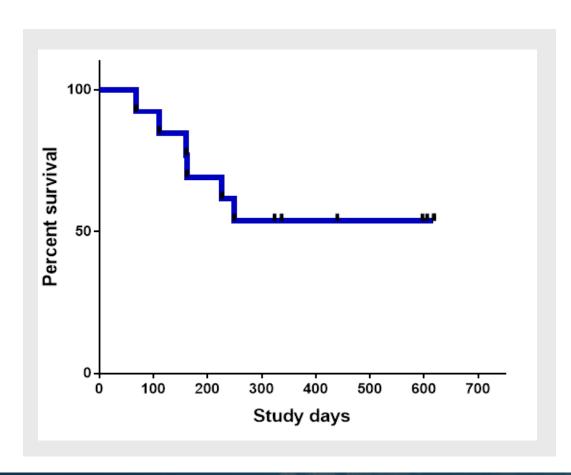
- VXM01 treatment causes activation of VEGFR-2specific T-cell response in patients
- Perfusion rates
 were used as
 biomarker,
 supporting the
 notion of VEGFR-2
 -specific T-cell
 activation
- VXM01 (incl. boosting) was very well tolerated
- Continued VXM01 treatment led to improved survival, correlating with immunological response to VXM01
- Metastatic load was markedly reduced in one patient following VXM01 treatment

- VXM01 showed early signs of clinical efficacy in pancreatic cancer
- First clinical validation of the oral Ty21a T-cell therapy platform
- Schmitz-Winnenthal et al., Oncolmmunology 2015 and Oncolmmunology 2017

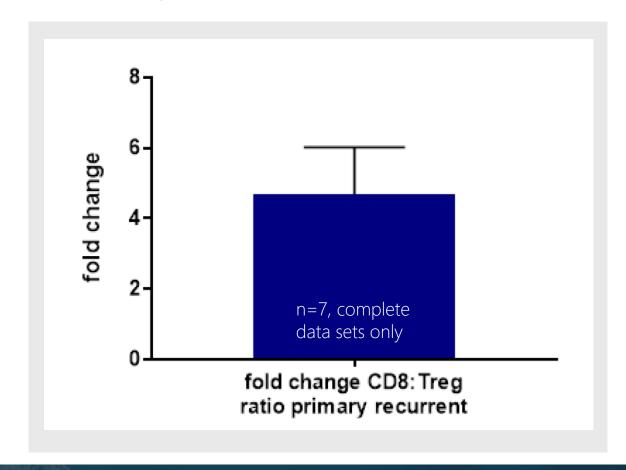
VXM01 Clinical Trial Currently Ongoing

... in glioblastoma

Glioblastoma **VXM01** treatment: Primary Tumor Operation Tumor Re-operation VXM01 $10^{6}/10^{7}$ CFU n=14 • Relapsed patients who are candidates for re-operation Comprehensive read-out pending • Initiation treatment prior to re-operation (continued post-op) T-cell response Monocenter trial in Heidelberg - High-res. brain tumor vasculature imaging • Two VXM01 doses 10⁶ or 10⁷ CFU – Immunohistochemistry on tumor samples Clinical response Patient number expanded beyond 8 patients Prof. Wick, Pl • Patient-specific prolongation of VXM01 treatment beyond one year initiated in 2 patients NCT MICHAEL CONTRACT AND TAKEN AND THE PERSON AND T • Seven out of 14 patients treated survived more than 1 year



• Interim data presented at ASCO 2017, abstract accepted for ASCO 2018


Promising Survival of Recurrent Glioblastoma Patients

... 7 out of 14 survived more than one year

Survival curve

CD8+/Treg ratio increased in recurrent tumor

Patients with Favorable Course of Disease

... in recurrent glioblastoma

1st patient

- Patient 2603 (male, 47 y), candidate for re-operation,
- Not operated due to tumor shrinkage under VXM01 treatment
- VXM01 treatment without other anti-cancer therapy during study up to week 12
- Partial response (PR) after 12 weeks under VXM01 monotherapy
- Complete response (CR) after additional 15 weeks under VXM01 and 6 doses of anti-PD1 treatment
- Durable response with significant clinical benefit
- Progressive disease at week 36
- High VEGFR-2 expression on tumor neovasculature in primary tumor

Patients with Favorable Course of Disease

... in recurrent glioblastoma

2nd patient

- Patient 2605 (female, 55 y), candidate for re-operation
- Showed stabilization of tumor growth after VXM01 treatment before re-operation
- VXM01 monotherapy treatment up to week 10
 - Initiation treatment plus boosting after reoperation
- Favorable post-operative course of disease under VXM01
 + chemotherapy from week 10 to week 36
- Stable Disease (SD) at week 76
- VEGFR-2 expression on tumor cells in primary tumor, but no expression on recurrent tumor cells after VXM01 treatment
 - Indicator of VEGFR-2 targeting effect

Baseline 25,1 x 10,2 mm

Day 35 –
Before Re-operation
24,6 x 12,3 mm

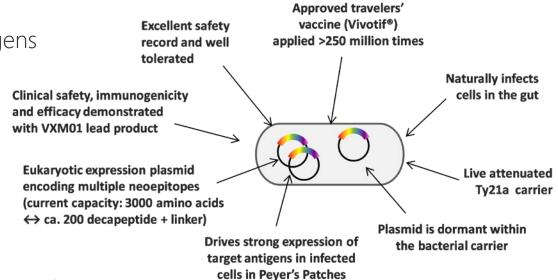
Patients with Favorable Course of Disease

... in recurrent glioblastoma

3rd patient

- Patient 2611 (female, 44 y), candidate for re-operation
- Showed stabilization of tumor growth after VXM01 treatment before re-operation
- Patient did not want to be re-operated
- VXM01 monotherapy treatment up to week 8
 - Initiation of additional nivolumab from week 8 onwards
- Stable Disease (SD) at week 36

Target Lesion	Tumor Diameter 1 [mm]	Tumor Diameter 2 {mm]
Baseline	14	11
Day 10	14	9
Day 21	14	10
Day 35	14	9
Week 12	14	10
Week 24	14	10
Week 36	11	10



Major Hurdles Can be Overcome

... by our VAXIMM delivery technology

Response to challenges faced in personalized neo-antigen approaches

- Less limited in number of epitopes
- Short time to oral administration after identification of neo-antigens
- Low manufacturing costs for established process
- QC analytics and generic product specification established
- No incompatibilities in galenic formulation
- Long-term stability of drug product
- Low exposure
- Patient treatment with off-the shelf constructs during time from identification of neo-antigens to availability of personalized drug product
- Immune and technical proof of concept shown in animals
- Platform clinically validated by lead product
 - ATMP certification by EMA and orphan drug designation for glioma in U.S. and E.U.

Contact

Dr. Thomas Hecht Executive Chairman

VAXIMM AG
Technologiepark Basel
Hochbergerstrasse 60c
4057 Basel
Switzerland

+ 41 79 3416968

thomas.hecht@vaximm.com

Dr. Heinz Lubenau COO

VAXIMM GmbH Harrlachweg 2 68163 Mannheim Germany

+49 621 8359 687 10

meinz.lubenau@vaximm.com

Dr. Marc Mansour CBO

VAXIMM AG
Technologiepark Basel
Hochbergerstrasse 60c
4057 Basel
Switzerland

+19024893969

marc.mansour@vaximm.com

